View source with raw comments or as raw
    1/*  Part of SWI-Prolog
    2
    3    Author:        Jan Wielemaker
    4    E-mail:        J.Wielemaker@vu.nl
    5    WWW:           http://www.swi-prolog.org
    6    Copyright (c)  2008-2020, University of Amsterdam
    7                              VU University Amsterdam
    8                              CWI Amsterdam
    9    All rights reserved.
   10
   11    Redistribution and use in source and binary forms, with or without
   12    modification, are permitted provided that the following conditions
   13    are met:
   14
   15    1. Redistributions of source code must retain the above copyright
   16       notice, this list of conditions and the following disclaimer.
   17
   18    2. Redistributions in binary form must reproduce the above copyright
   19       notice, this list of conditions and the following disclaimer in
   20       the documentation and/or other materials provided with the
   21       distribution.
   22
   23    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   24    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   25    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   26    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
   27    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   28    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   29    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   30    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   31    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
   33    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   34    POSSIBILITY OF SUCH DAMAGE.
   35*/
   36
   37:- module(aggregate,
   38          [ foreach/2,                  % :Generator, :Goal
   39            aggregate/3,                % +Templ, :Goal, -Result
   40            aggregate/4,                % +Templ, +Discrim, :Goal, -Result
   41            aggregate_all/3,            % +Templ, :Goal, -Result
   42            aggregate_all/4,            % +Templ, +Discrim, :Goal, -Result
   43            free_variables/4            % :Generator, :Template, +Vars0, -Vars
   44          ]).   45:- autoload(library(apply),[maplist/4,maplist/5]).   46:- autoload(library(error),
   47	    [instantiation_error/1,type_error/2,domain_error/2]).   48:- autoload(library(lists),
   49	    [append/3,member/2,sum_list/2,max_list/2,min_list/2]).   50:- autoload(library(ordsets),[ord_intersection/3]).   51:- autoload(library(pairs),[pairs_values/2]).   52
   53:- set_prolog_flag(generate_debug_info, false).   54
   55:- meta_predicate
   56    foreach(0,0),
   57    aggregate(?,^,-),
   58    aggregate(?,?,^,-),
   59    aggregate_all(?,0,-),
   60    aggregate_all(?,?,0,-).

Aggregation operators on backtrackable predicates

This library provides aggregating operators over the solutions of a predicate. The operations are a generalisation of the bagof/3, setof/3 and findall/3 built-in predicates. Aggregations that can be computed incrementally avoid findall/3 and run in constant memory. The defined aggregation operations are counting, computing the sum, minimum, maximum, a bag of solutions and a set of solutions. We first give a simple example, computing the country with the smallest area:

smallest_country(Name, Area) :-
    aggregate(min(A, N), country(N, A), min(Area, Name)).

There are four aggregation predicates (aggregate/3, aggregate/4, aggregate_all/3 and aggregate/4), distinguished on two properties.

aggregate vs. aggregate_all
The aggregate predicates use setof/3 (aggregate/4) or bagof/3 (aggregate/3), dealing with existential qualified variables (Var^Goal) and providing multiple solutions for the remaining free variables in Goal. The aggregate_all/3 predicate uses findall/3, implicitly qualifying all free variables and providing exactly one solution, while aggregate_all/4 uses sort/2 over solutions that Discriminator (see below) generated using findall/3.
The Discriminator argument
The versions with 4 arguments deduplicate redundant solutions of Goal. Solutions for which both the template variables and Discriminator are identical will be treated as one solution. For example, if we wish to compute the total population of all countries, and for some reason country(belgium, 11000000) may succeed twice, we can use the following to avoid counting the population of Belgium twice:
    aggregate(sum(P), Name, country(Name, P), Total)

All aggregation predicates support the following operators below in Template. In addition, they allow for an arbitrary named compound term, where each of the arguments is a term from the list below. For example, the term r(min(X), max(X)) computes both the minimum and maximum binding for X.

count
Count number of solutions. Same as sum(1).
sum(Expr)
Sum of Expr for all solutions.
min(Expr)
Minimum of Expr for all solutions.
min(Expr, Witness)
A term min(Min, Witness), where Min is the minimal version of Expr over all solutions, and Witness is any other template applied to solutions that produced Min. If multiple solutions provide the same minimum, Witness corresponds to the first solution.
max(Expr)
Maximum of Expr for all solutions.
max(Expr, Witness)
As min(Expr, Witness), but producing the maximum result.
set(X)
An ordered set with all solutions for X.
bag(X)
A list of all solutions for X.

Acknowledgements

The development of this library was sponsored by SecuritEase, http://www.securitease.com

Compatibility
- Quintus, SICStus 4. The forall/2 is a SWI-Prolog built-in and term_variables/3 is a SWI-Prolog built-in with different semantics.
To be done
- Analysing the aggregation template and compiling a predicate for the list aggregation can be done at compile time.
- aggregate_all/3 can be rewritten to run in constant space using non-backtrackable assignment on a term. */
  143                 /*******************************
  144                 *           AGGREGATE          *
  145                 *******************************/
 aggregate(+Template, :Goal, -Result) is nondet
Aggregate bindings in Goal according to Template. The aggregate/3 version performs bagof/3 on Goal.
  152aggregate(Template, Goal0, Result) :-
  153    template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
  154    bagof(Pattern, Goal, List),
  155    aggregate_list(Aggregate, List, Result).
 aggregate(+Template, +Discriminator, :Goal, -Result) is nondet
Aggregate bindings in Goal according to Template. The aggregate/4 version performs setof/3 on Goal.
  162aggregate(Template, Discriminator, Goal0, Result) :-
  163    template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
  164    setof(Discriminator-Pattern, Goal, Pairs),
  165    pairs_values(Pairs, List),
  166    aggregate_list(Aggregate, List, Result).
 aggregate_all(+Template, :Goal, -Result) is semidet
Aggregate bindings in Goal according to Template. The aggregate_all/3 version performs findall/3 on Goal. Note that this predicate fails if Template contains one or more of min(X), max(X), min(X,Witness) or max(X,Witness) and Goal has no solutions, i.e., the minimum and maximum of an empty set is undefined.

The Template values count, sum(X), max(X), min(X), max(X,W) and min(X,W) are processed incrementally rather than using findall/3 and run in constant memory.

  180aggregate_all(Var, _, _) :-
  181    var(Var),
  182    !,
  183    instantiation_error(Var).
  184aggregate_all(count, Goal, Count) :-
  185    !,
  186    aggregate_all(sum(1), Goal, Count).
  187aggregate_all(sum(X), Goal, Sum) :-
  188    !,
  189    State = state(0),
  190    (  call(Goal),
  191           arg(1, State, S0),
  192           S is S0 + X,
  193           nb_setarg(1, State, S),
  194           fail
  195    ;  arg(1, State, Sum)
  196    ).
  197aggregate_all(max(X), Goal, Max) :-
  198    !,
  199    State = state(X),
  200    (  call(Goal),
  201           arg(1, State, M0),
  202           M is max(M0,X),
  203           nb_setarg(1, State, M),
  204           fail
  205    ;  arg(1, State, Max),
  206           nonvar(Max)
  207    ).
  208aggregate_all(min(X), Goal, Min) :-
  209    !,
  210    State = state(X),
  211    (  call(Goal),
  212           arg(1, State, M0),
  213           M is min(M0,X),
  214           nb_setarg(1, State, M),
  215           fail
  216    ;  arg(1, State, Min),
  217           nonvar(Min)
  218    ).
  219aggregate_all(max(X,W), Goal, max(Max,Witness)) :-
  220    !,
  221    State = state(false, _Max, _Witness),
  222    (  call(Goal),
  223           (   State = state(true, Max0, _)
  224           ->  X > Max0,
  225               nb_setarg(2, State, X),
  226               nb_setarg(3, State, W)
  227           ;   number(X)
  228           ->  nb_setarg(1, State, true),
  229               nb_setarg(2, State, X),
  230               nb_setarg(3, State, W)
  231           ;   type_error(number, X)
  232           ),
  233           fail
  234    ;  State = state(true, Max, Witness)
  235    ).
  236aggregate_all(min(X,W), Goal, min(Min,Witness)) :-
  237    !,
  238    State = state(false, _Min, _Witness),
  239    (  call(Goal),
  240           (   State = state(true, Min0, _)
  241           ->  X < Min0,
  242               nb_setarg(2, State, X),
  243               nb_setarg(3, State, W)
  244           ;   number(X)
  245           ->  nb_setarg(1, State, true),
  246               nb_setarg(2, State, X),
  247               nb_setarg(3, State, W)
  248           ;   type_error(number, X)
  249           ),
  250           fail
  251    ;  State = state(true, Min, Witness)
  252    ).
  253aggregate_all(Template, Goal0, Result) :-
  254    template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
  255    findall(Pattern, Goal, List),
  256    aggregate_list(Aggregate, List, Result).
 aggregate_all(+Template, +Discriminator, :Goal, -Result) is semidet
Aggregate bindings in Goal according to Template. The aggregate_all/4 version performs findall/3 followed by sort/2 on Goal. See aggregate_all/3 to understand why this predicate can fail.
  265aggregate_all(Template, Discriminator, Goal0, Result) :-
  266    template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
  267    findall(Discriminator-Pattern, Goal, Pairs0),
  268    sort(Pairs0, Pairs),
  269    pairs_values(Pairs, List),
  270    aggregate_list(Aggregate, List, Result).
  271
  272template_to_pattern(All, Template, Pattern, Goal0, Goal, Aggregate) :-
  273    template_to_pattern(Template, Pattern, Post, Vars, Aggregate),
  274    existential_vars(Goal0, Goal1, AllVars, Vars),
  275    clean_body((Goal1, Post), Goal2),
  276    (   All == bag
  277    ->  add_existential_vars(AllVars, Goal2, Goal)
  278    ;   Goal = Goal2
  279    ).
  280
  281existential_vars(Var, Var) -->
  282    { var(Var) },
  283    !.
  284existential_vars(Var^G0, G) -->
  285    !,
  286    [Var],
  287    existential_vars(G0, G).
  288existential_vars(M:G0, M:G) -->
  289    !,
  290    existential_vars(G0, G).
  291existential_vars(G, G) -->
  292    [].
  293
  294add_existential_vars([], G, G).
  295add_existential_vars([H|T], G0, H^G1) :-
  296    add_existential_vars(T, G0, G1).
 clean_body(+Goal0, -Goal) is det
Remove redundant true from Goal0.
  303clean_body((Goal0,Goal1), Goal) :-
  304    !,
  305    clean_body(Goal0, GoalA),
  306    clean_body(Goal1, GoalB),
  307    (   GoalA == true
  308    ->  Goal = GoalB
  309    ;   GoalB == true
  310    ->  Goal = GoalA
  311    ;   Goal = (GoalA,GoalB)
  312    ).
  313clean_body(Goal, Goal).
 template_to_pattern(+Template, -Pattern, -Post, -Vars, -Aggregate)
Determine which parts of the goal we must remember in the findall/3 pattern.
Arguments:
Post- is a body-term that evaluates expressions to reduce storage requirements.
Vars- is a list of intermediate variables that must be added to the existential variables for bagof/3.
Aggregate- defines the aggregation operation to execute.
  327template_to_pattern(Term, Pattern, Goal, Vars, Aggregate) :-
  328    templ_to_pattern(Term, Pattern, Goal, Vars, Aggregate),
  329    !.
  330template_to_pattern(Term, Pattern, Goal, Vars, term(MinNeeded, Functor, AggregateArgs)) :-
  331    compound(Term),
  332    !,
  333    Term =.. [Functor|Args0],
  334    templates_to_patterns(Args0, Args, Goal, Vars, AggregateArgs),
  335    needs_one(AggregateArgs, MinNeeded),
  336    Pattern =.. [Functor|Args].
  337template_to_pattern(Term, _, _, _, _) :-
  338    invalid_template(Term).
  339
  340templ_to_pattern(sum(X),           X,         true,    [],   sum) :- var(X), !.
  341templ_to_pattern(sum(X0),          X,         X is X0, [X0], sum) :- !.
  342templ_to_pattern(count,            1,         true,    [],   count) :- !.
  343templ_to_pattern(min(X),           X,         true,    [],   min) :- var(X), !.
  344templ_to_pattern(min(X0),          X,         X is X0, [X0], min) :- !.
  345templ_to_pattern(min(X0, Witness), X-Witness, X is X0, [X0], min_witness) :- !.
  346templ_to_pattern(max(X0),          X,         X is X0, [X0], max) :- !.
  347templ_to_pattern(max(X0, Witness), X-Witness, X is X0, [X0], max_witness) :- !.
  348templ_to_pattern(set(X),           X,         true,    [],   set) :- !.
  349templ_to_pattern(bag(X),           X,         true,    [],   bag) :- !.
  350
  351templates_to_patterns([], [], true, [], []).
  352templates_to_patterns([H0], [H], G, Vars, [A]) :-
  353    !,
  354    sub_template_to_pattern(H0, H, G, Vars, A).
  355templates_to_patterns([H0|T0], [H|T], (G0,G), Vars, [A0|A]) :-
  356    sub_template_to_pattern(H0, H, G0, V0, A0),
  357    append(V0, RV, Vars),
  358    templates_to_patterns(T0, T, G, RV, A).
  359
  360sub_template_to_pattern(Term, Pattern, Goal, Vars, Aggregate) :-
  361    templ_to_pattern(Term, Pattern, Goal, Vars, Aggregate),
  362    !.
  363sub_template_to_pattern(Term, _, _, _, _) :-
  364    invalid_template(Term).
  365
  366invalid_template(Term) :-
  367    callable(Term),
  368    !,
  369    domain_error(aggregate_template, Term).
  370invalid_template(Term) :-
  371    type_error(aggregate_template, Term).
 needs_one(+Ops, -OneOrZero)
If one of the operations in Ops needs at least one answer, unify OneOrZero to 1. Else 0.
  378needs_one(Ops, 1) :-
  379    member(Op, Ops),
  380    needs_one(Op),
  381    !.
  382needs_one(_, 0).
  383
  384needs_one(min).
  385needs_one(min_witness).
  386needs_one(max).
  387needs_one(max_witness).
 aggregate_list(+Op, +List, -Answer) is semidet
Aggregate the answer from the list produced by findall/3, bagof/3 or setof/3. The latter two cases deal with compound answers.
To be done
- Compile code for incremental state update, which we will use for aggregate_all/3 as well. We should be using goal_expansion to generate these clauses.
  399aggregate_list(bag, List0, List) :-
  400    !,
  401    List = List0.
  402aggregate_list(set, List, Set) :-
  403    !,
  404    sort(List, Set).
  405aggregate_list(sum, List, Sum) :-
  406    sum_list(List, Sum).
  407aggregate_list(count, List, Count) :-
  408    length(List, Count).
  409aggregate_list(max, List, Sum) :-
  410    max_list(List, Sum).
  411aggregate_list(max_witness, List, max(Max, Witness)) :-
  412    max_pair(List, Max, Witness).
  413aggregate_list(min, List, Sum) :-
  414    min_list(List, Sum).
  415aggregate_list(min_witness, List, min(Min, Witness)) :-
  416    min_pair(List, Min, Witness).
  417aggregate_list(term(0, Functor, Ops), List, Result) :-
  418    !,
  419    maplist(state0, Ops, StateArgs, FinishArgs),
  420    State0 =.. [Functor|StateArgs],
  421    aggregate_term_list(List, Ops, State0, Result0),
  422    finish_result(Ops, FinishArgs, Result0, Result).
  423aggregate_list(term(1, Functor, Ops), [H|List], Result) :-
  424    H =.. [Functor|Args],
  425    maplist(state1, Ops, Args, StateArgs, FinishArgs),
  426    State0 =.. [Functor|StateArgs],
  427    aggregate_term_list(List, Ops, State0, Result0),
  428    finish_result(Ops, FinishArgs, Result0, Result).
  429
  430aggregate_term_list([], _, State, State).
  431aggregate_term_list([H|T], Ops, State0, State) :-
  432    step_term(Ops, H, State0, State1),
  433    aggregate_term_list(T, Ops, State1, State).
 min_pair(+Pairs, -Key, -Value) is det
 max_pair(+Pairs, -Key, -Value) is det
True if Key-Value has the smallest/largest key in Pairs. If multiple pairs share the smallest/largest key, the first pair is returned.
  443min_pair([M0-W0|T], M, W) :-
  444    min_pair(T, M0, W0, M, W).
  445
  446min_pair([], M, W, M, W).
  447min_pair([M0-W0|T], M1, W1, M, W) :-
  448    (   M0 < M1
  449    ->  min_pair(T, M0, W0, M, W)
  450    ;   min_pair(T, M1, W1, M, W)
  451    ).
  452
  453max_pair([M0-W0|T], M, W) :-
  454    max_pair(T, M0, W0, M, W).
  455
  456max_pair([], M, W, M, W).
  457max_pair([M0-W0|T], M1, W1, M, W) :-
  458    (   M0 > M1
  459    ->  max_pair(T, M0, W0, M, W)
  460    ;   max_pair(T, M1, W1, M, W)
  461    ).
 step(+AggregateAction, +New, +State0, -State1)
  465step(bag,   X, [X|L], L).
  466step(set,   X, [X|L], L).
  467step(count, _, X0, X1) :-
  468    succ(X0, X1).
  469step(sum,   X, X0, X1) :-
  470    X1 is X0+X.
  471step(max,   X, X0, X1) :-
  472    X1 is max(X0, X).
  473step(min,   X, X0, X1) :-
  474    X1 is min(X0, X).
  475step(max_witness, X-W, X0-W0, X1-W1) :-
  476    (   X > X0
  477    ->  X1 = X, W1 = W
  478    ;   X1 = X0, W1 = W0
  479    ).
  480step(min_witness, X-W, X0-W0, X1-W1) :-
  481    (   X < X0
  482    ->  X1 = X, W1 = W
  483    ;   X1 = X0, W1 = W0
  484    ).
  485step(term(Ops), Row, Row0, Row1) :-
  486    step_term(Ops, Row, Row0, Row1).
  487
  488step_term(Ops, Row, Row0, Row1) :-
  489    functor(Row, Name, Arity),
  490    functor(Row1, Name, Arity),
  491    step_list(Ops, 1, Row, Row0, Row1).
  492
  493step_list([], _, _, _, _).
  494step_list([Op|OpT], Arg, Row, Row0, Row1) :-
  495    arg(Arg, Row, X),
  496    arg(Arg, Row0, X0),
  497    arg(Arg, Row1, X1),
  498    step(Op, X, X0, X1),
  499    succ(Arg, Arg1),
  500    step_list(OpT, Arg1, Row, Row0, Row1).
  501
  502finish_result(Ops, Finish, R0, R) :-
  503    functor(R0, Functor, Arity),
  504    functor(R, Functor, Arity),
  505    finish_result(Ops, Finish, 1, R0, R).
  506
  507finish_result([], _, _, _, _).
  508finish_result([Op|OpT], [F|FT], I, R0, R) :-
  509    arg(I, R0, A0),
  510    arg(I, R, A),
  511    finish_result1(Op, F, A0, A),
  512    succ(I, I2),
  513    finish_result(OpT, FT, I2, R0, R).
  514
  515finish_result1(bag, Bag0, [], Bag) :-
  516    !,
  517    Bag = Bag0.
  518finish_result1(set, Bag,  [], Set) :-
  519    !,
  520    sort(Bag, Set).
  521finish_result1(max_witness, _, M-W, R) :-
  522    !,
  523    R = max(M,W).
  524finish_result1(min_witness, _, M-W, R) :-
  525    !,
  526    R = min(M,W).
  527finish_result1(_, _, A, A).
 state0(+Op, -State, -Finish)
  531state0(bag,   L, L).
  532state0(set,   L, L).
  533state0(count, 0, _).
  534state0(sum,   0, _).
 state1(+Op, +First, -State, -Finish)
  538state1(bag, X, L, [X|L]) :- !.
  539state1(set, X, L, [X|L]) :- !.
  540state1(_,   X, X, _).
  541
  542
  543                 /*******************************
  544                 *             FOREACH          *
  545                 *******************************/
 foreach(:Generator, :Goal)
True when the conjunction of instances of Goal created from solutions for Generator is true. Except for term copying, this could be implemented as below.
foreach(Generator, Goal) :-
    findall(Goal, Generator, Goals),
    maplist(call, Goals).

The actual implementation uses findall/3 on a template created from the variables shared between Generator and Goal. Subsequently, it uses every instance of this template to instantiate Goal, call Goal and undo only the instantiation of the template and not other instantiations created by running Goal. Here is an example:

?- foreach(between(1,4,X), dif(X,Y)), Y = 5.
Y = 5.
?- foreach(between(1,4,X), dif(X,Y)), Y = 3.
false.

The predicate foreach/2 is mostly used if Goal performs backtrackable destructive assignment on terms. Attributed variables (underlying constraints) are an example. Another example of a backtrackable data structure is in library(hashtable). If we care only about the side effects (I/O, dynamic database, etc.) or the truth value of Goal, forall/2 is a faster and simpler alternative. If Goal instantiates its arguments it is will often fail as the argument cannot be instantiated to multiple values. It is possible to incrementally grow an argument:

?- foreach(between(1,4,X), member(X, L)).
L = [1,2,3,4|_].

Note that SWI-Prolog up to version 8.3.4 created copies of Goal using copy_term/2 for each iteration, this makes the current implementation unable to properly handle compound terms (in Goal's arguments) that share variables with the Generator. As a workaround you can define a goal that does not use compound terms, like in this example:

mem(E,L) :-  % mem/2 hides the compound argument from foreach/2
   member(r(E),L).

?- foreach(  between(1,5,N), mem(N,L)).
  601foreach(Generator, Goal) :-
  602    term_variables(Generator, GenVars0), sort(GenVars0, GenVars),
  603    term_variables(Goal, GoalVars0), sort(GoalVars0, GoalVars),
  604    ord_intersection(GenVars, GoalVars, SharedVars),
  605    Templ =.. [v|SharedVars],
  606    findall(Templ, Generator, List),
  607    prove_list(List, Templ, Goal).
  608
  609prove_list([], _, _).
  610prove_list([H|T], Templ, Goal) :-
  611    Templ = H,
  612    call(Goal),
  613    '$unbind_template'(Templ),
  614    prove_list(T, Templ, Goal).
 free_variables(:Generator, +Template, +VarList0, -VarList) is det
Find free variables in bagof/setof template. In order to handle variables properly, we have to find all the universally quantified variables in the Generator. All variables as yet unbound are universally quantified, unless
  1. they occur in the template
  2. they are bound by X^P, setof/3, or bagof/3

free_variables(Generator, Template, OldList, NewList) finds this set using OldList as an accumulator.

author
- Richard O'Keefe
- Jan Wielemaker (made some SWI-Prolog enhancements)
license
- Public domain (from DEC10 library).
To be done
- Distinguish between control-structures and data terms.
- Exploit our built-in term_variables/2 at some places?
  636free_variables(Term, Bound, VarList, [Term|VarList]) :-
  637    var(Term),
  638    term_is_free_of(Bound, Term),
  639    list_is_free_of(VarList, Term),
  640    !.
  641free_variables(Term, _Bound, VarList, VarList) :-
  642    var(Term),
  643    !.
  644free_variables(Term, Bound, OldList, NewList) :-
  645    explicit_binding(Term, Bound, NewTerm, NewBound),
  646    !,
  647    free_variables(NewTerm, NewBound, OldList, NewList).
  648free_variables(Term, Bound, OldList, NewList) :-
  649    functor(Term, _, N),
  650    free_variables(N, Term, Bound, OldList, NewList).
  651
  652free_variables(0, _, _, VarList, VarList) :- !.
  653free_variables(N, Term, Bound, OldList, NewList) :-
  654    arg(N, Term, Argument),
  655    free_variables(Argument, Bound, OldList, MidList),
  656    M is N-1,
  657    !,
  658    free_variables(M, Term, Bound, MidList, NewList).
  659
  660%   explicit_binding checks for goals known to existentially quantify
  661%   one or more variables.  In particular \+ is quite common.
  662
  663explicit_binding(\+ _Goal,             Bound, fail,     Bound      ) :- !.
  664explicit_binding(not(_Goal),           Bound, fail,     Bound      ) :- !.
  665explicit_binding(Var^Goal,             Bound, Goal,     Bound+Var) :- !.
  666explicit_binding(setof(Var,Goal,Set),  Bound, Goal-Set, Bound+Var) :- !.
  667explicit_binding(bagof(Var,Goal,Bag),  Bound, Goal-Bag, Bound+Var) :- !.
 term_is_free_of(+Term, +Var) is semidet
True if Var does not appear in Term. This has been rewritten from the DEC10 library source to exploit our non-deterministic arg/3.
  675term_is_free_of(Term, Var) :-
  676    \+ var_in_term(Term, Var).
  677
  678var_in_term(Term, Var) :-
  679    Var == Term,
  680    !.
  681var_in_term(Term, Var) :-
  682    compound(Term),
  683    arg(_, Term, Arg),
  684    var_in_term(Arg, Var),
  685    !.
 list_is_free_of(+List, +Var) is semidet
True if Var is not in List.
  692list_is_free_of([Head|Tail], Var) :-
  693    Head \== Var,
  694    !,
  695    list_is_free_of(Tail, Var).
  696list_is_free_of([], _).
  697
  698
  699%       term_variables(+Term, +Vars0, -Vars) is det.
  700%
  701%       True if Vars is the union of variables in Term and Vars0.
  702%       We cannot have this as term_variables/3 is already defined
  703%       as a difference-list version of term_variables/2.
  704
  705%term_variables(Term, Vars0, Vars) :-
  706%       term_variables(Term+Vars0, Vars).
 sandbox:safe_meta(+Goal, -Called) is semidet
Declare the aggregate meta-calls safe. This cannot be proven due to the manipulations of the argument Goal.
  714:- multifile sandbox:safe_meta_predicate/1.  715
  716sandbox:safe_meta_predicate(aggregate:foreach/2).
  717sandbox:safe_meta_predicate(aggregate:aggregate/3).
  718sandbox:safe_meta_predicate(aggregate:aggregate/4).
  719sandbox:safe_meta_predicate(aggregate:aggregate_all/3).
  720sandbox:safe_meta_predicate(aggregate:aggregate_all/4)