View source with formatted comments or as raw
    1/*  Part of SWI-Prolog
    2
    3    Author:        Jan Wielemaker
    4    E-mail:        J.Wielemaker@vu.nl
    5    WWW:           http://www.swi-prolog.org
    6    Copyright (c)  2019-2020, VU University Amsterdam
    7                              CWI, Amsterdam
    8    All rights reserved.
    9
   10    Redistribution and use in source and binary forms, with or without
   11    modification, are permitted provided that the following conditions
   12    are met:
   13
   14    1. Redistributions of source code must retain the above copyright
   15       notice, this list of conditions and the following disclaimer.
   16
   17    2. Redistributions in binary form must reproduce the above copyright
   18       notice, this list of conditions and the following disclaimer in
   19       the documentation and/or other materials provided with the
   20       distribution.
   21
   22    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   23    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   24    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   25    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
   26    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   27    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   28    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   29    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   30    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
   32    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   33    POSSIBILITY OF SUCH DAMAGE.
   34*/
   35
   36:- module(prolog_code,
   37          [ comma_list/2,                       % (A,B) <-> [A,B]
   38            semicolon_list/2,                   % (A;B) <-> [A,B]
   39
   40            mkconj/3,                           % +A, +B, -Conjunction
   41            mkdisj/3,                           % +A, +B, -Disjunction
   42
   43            pi_head/2,                          % :PI, :Head
   44            head_name_arity/3,			% ?Goal, ?Name, ?Arity
   45
   46            most_general_goal/2,                % :Goal, -General
   47            extend_goal/3,                      % :Goal, +Extra, -GoalOut
   48
   49            predicate_label/2,                  % +PI, -Label
   50            predicate_sort_key/2,               % +PI, -Key
   51
   52            is_control_goal/1,                  % @Term
   53            is_predicate_indicator/1,           % @Term
   54
   55            body_term_calls/2                   % :BodyTerm, -Goal
   56          ]).   57:- autoload(library(error),[must_be/2, instantiation_error/1]).   58:- autoload(library(lists),[append/3]).   59
   60:- meta_predicate
   61    body_term_calls(:, -).   62
   63:- multifile
   64    user:prolog_predicate_name/2.   65
   66/** <module> Utilities for reasoning about code
   67
   68This library collects utilities to reason   about  terms commonly needed
   69for reasoning about Prolog code. Note   that many related facilities can
   70be found in the core as well as other libraries:
   71
   72  - =@=/2, subsumes_term/2, etc.
   73  - library(occurs)
   74  - library(listing)
   75  - library(prolog_source)
   76  - library(prolog_xref)
   77  - library(prolog_codewalk)
   78*/
   79
   80%!  comma_list(?CommaList, ?List).
   81%!  semicolon_list(?SemicolonList, ?List).
   82%
   83%   True if CommaList is a nested term   over  the ','/2 (';'/2) functor
   84%   and List is a list expressing the   elements of the conjunction. The
   85%   predicate  is  deterministic  if  at  least  CommaList  or  List  is
   86%   sufficiently  instantiated.  If  both  are   partial  structures  it
   87%   enumerates ever growing conjunctions  and   lists.  CommaList may be
   88%   left or right associative on input. When generated, the CommaList is
   89%   always right associative.
   90%
   91%   This predicate is typically used to reason about Prolog conjunctions
   92%   (disjunctions) as many operations are easier on lists than on binary
   93%   trees over some operator.
   94
   95comma_list(CommaList, List) :-
   96    phrase(binlist(CommaList, ','), List).
   97semicolon_list(CommaList, List) :-
   98    phrase(binlist(CommaList, ';'), List).
   99
  100binlist(Term, Functor) -->
  101    { nonvar(Term) },
  102    !,
  103    (   { Term =.. [Functor,A,B] }
  104    ->  binlist(A, Functor),
  105        binlist(B, Functor)
  106    ;   [Term]
  107    ).
  108binlist(Term, Functor) -->
  109    [A],
  110    (   var_tail
  111    ->  (   { Term = A }
  112        ;   { Term =.. [Functor,A,B] },
  113            binlist(B,Functor)
  114        )
  115    ;   \+ [_]
  116    ->  {Term = A}
  117    ;   binlist(B,Functor),
  118        {Term =.. [Functor,A,B]}
  119    ).
  120
  121var_tail(H, H) :-
  122    var(H).
  123
  124%!  mkconj(A,B,Conj) is det.
  125%!  mkdisj(A,B,Disj) is det.
  126%
  127%   Create a conjunction or  disjunction  from   two  terms.  Reduces on
  128%   `true` (mkconj/2) and  `false`  (mkdisj/2).   Note  that  a  `false`
  129%   encountered in a conjunction does __not__   cause the conjunction to
  130%   be `false`, i.e. semantics under side effects are preserved.
  131%
  132%   The Prolog `,` and `;` operators  are   of  type  `xfy`, i.e. _right
  133%   associative_. These predicates preserve this grouping. For example,
  134%
  135%       ?- mkconj((a,b), c, Conj)
  136%       Conj = (a,b,c)
  137
  138mkconj(A,B,Conj) :-
  139    (   is_true(A)
  140    ->  Conj = B
  141    ;   is_true(B)
  142    ->  Conj = A
  143    ;   mkconj_(A,B,Conj)
  144    ).
  145
  146mkconj_((A,B), C, Conj) =>
  147    Conj = (A,C2),
  148    mkconj_(B,C,C2).
  149mkconj_(A, B, C) =>
  150    C = (A,B).
  151
  152mkdisj(A,B,Disj) :-
  153    (   is_false(A)
  154    ->  Disj = B
  155    ;   is_false(B)
  156    ->  Disj = A
  157    ;   mkdisj_(A,B,Disj)
  158    ).
  159
  160mkdisj_((A;B), C, Disj) =>
  161    Disj = (A;C2),
  162    mkdisj_(B, C, C2).
  163mkdisj_(A, B, C) =>
  164    C = (A;B).
  165
  166is_true(Goal) :- Goal == true.
  167is_false(Goal) :- (Goal == false -> true ; Goal == fail).
  168
  169%!  is_predicate_indicator(@Term) is semidet.
  170%
  171%   True when Term is a predicate indicator
  172
  173is_predicate_indicator(Var) :-
  174    var(Var),
  175    !,
  176    instantiation_error(Var).
  177is_predicate_indicator(PI) :-
  178    strip_module(PI, M, PI1),
  179    atom(M),
  180    (   PI1 = (Name/Arity)
  181    ->  true
  182    ;   PI1 = (Name//Arity)
  183    ),
  184    atom(Name),
  185    integer(Arity),
  186    Arity >= 0.
  187
  188%!  pi_head(?PredicateIndicator, ?Goal) is det.
  189%
  190%   Translate between a PredicateIndicator and a   Goal  term. The terms
  191%   may have a module qualification.
  192%
  193%   @error type_error(predicate_indicator, PredicateIndicator)
  194
  195pi_head(PI, Head) :-
  196    '$pi_head'(PI, Head).
  197
  198%!  head_name_arity(?Goal, ?Name, ?Arity) is det.
  199%
  200%   Similar to functor/3, but  deals   with  SWI-Prolog's  zero-argument
  201%   callable terms and avoids creating a   non-callable  term if Name is
  202%   not an atom and Arity is zero.
  203
  204head_name_arity(Goal, Name, Arity) :-
  205    '$head_name_arity'(Goal, Name, Arity).
  206
  207%!  most_general_goal(+Goal, -General) is det.
  208%
  209%   General is the most general version of Goal.  Goal can be qualified.
  210%
  211%   @see is_most_general_term/1.
  212
  213most_general_goal(Goal, General) :-
  214    var(Goal),
  215    !,
  216    General = Goal.
  217most_general_goal(Goal, General) :-
  218    atom(Goal),
  219    !,
  220    General = Goal.
  221most_general_goal(M:Goal, M:General) :-
  222    !,
  223    most_general_goal(Goal, General).
  224most_general_goal(Compound, General) :-
  225    compound_name_arity(Compound, Name, Arity),
  226    compound_name_arity(General, Name, Arity).
  227
  228
  229%!  extend_goal(:Goal0, +Extra, -Goal) is det.
  230%
  231%   Extend the possibly qualified Goal0   with additional arguments from
  232%   Extra. If Goal0 is insufficiantly instantiated (i.e., a variable), a
  233%   term call(Goal0, ...) is returned.
  234
  235extend_goal(Goal0, Extra, Goal) :-
  236    var(Goal0),
  237    !,
  238    Goal =.. [call,Goal0|Extra].
  239extend_goal(M:Goal0, Extra, M:Goal) :-
  240    extend_goal(Goal0, Extra, Goal).
  241extend_goal(Atom, Extra, Goal) :-
  242    atom(Atom),
  243    !,
  244    Goal =.. [Atom|Extra].
  245extend_goal(Goal0, Extra, Goal) :-
  246    compound_name_arguments(Goal0, Name, Args0),
  247    append(Args0, Extra, Args),
  248    compound_name_arguments(Goal, Name, Args).
  249
  250
  251		 /*******************************
  252		 *            LABELS		*
  253		 *******************************/
  254
  255%!  predicate_label(++PI, -Label) is det.
  256%
  257%   Create a human-readable label  for   the  given predicate indicator.
  258%   This notably hides the module qualification from `user` and built-in
  259%   predicates. This predicate  is  intended   for  reporting  predicate
  260%   information to the user, for example in the profiler.
  261%
  262%   First   PI   is   converted   to    a     _head_    and   the   hook
  263%   user:prolog_predicate_name/2 is tried.
  264
  265predicate_label(PI, Label) :-
  266    must_be(ground, PI),
  267    pi_head(PI, Head),
  268    user:prolog_predicate_name(Head, Label),
  269    !.
  270predicate_label(M:Name/Arity, Label) :-
  271    !,
  272    (   hidden_module(M, Name/Arity)
  273    ->  atomic_list_concat([Name, /, Arity], Label)
  274    ;   atomic_list_concat([M, :, Name, /, Arity], Label)
  275    ).
  276predicate_label(M:Name//Arity, Label) :-
  277    !,
  278    (   hidden_module(M, Name//Arity)
  279    ->  atomic_list_concat([Name, //, Arity], Label)
  280    ;   atomic_list_concat([M, :, Name, //, Arity], Label)
  281    ).
  282predicate_label(Name/Arity, Label) :-
  283    !,
  284    atomic_list_concat([Name, /, Arity], Label).
  285predicate_label(Name//Arity, Label) :-
  286    !,
  287    atomic_list_concat([Name, //, Arity], Label).
  288
  289hidden_module(system, _).
  290hidden_module(user, _).
  291hidden_module(M, Name/Arity) :-
  292    functor(H, Name, Arity),
  293    predicate_property(system:H, imported_from(M)).
  294hidden_module(M, Name//DCGArity) :-
  295    Arity is DCGArity+1,
  296    functor(H, Name, Arity),
  297    predicate_property(system:H, imported_from(M)).
  298
  299%!  predicate_sort_key(+PI, -Key) is det.
  300%
  301%   Key is the (module-free) name of the predicate for sorting purposes.
  302
  303predicate_sort_key(_:PI, Name) :-
  304    !,
  305    predicate_sort_key(PI, Name).
  306predicate_sort_key(Name/_Arity, Name).
  307predicate_sort_key(Name//_Arity, Name).
  308
  309%!  is_control_goal(@Goal)
  310%
  311%   True if Goal is a compiled  Prolog control structure. The difference
  312%   between control structures and meta-predicates   is  rather unclear.
  313%   The constructs below are recognised by   the  compiler and cannot be
  314%   redefined.   Note   that   (if->then;else)     is    recognised   as
  315%   ((if->then);else).
  316
  317is_control_goal(Goal) :-
  318    var(Goal),
  319    !, fail.
  320is_control_goal((_,_)).
  321is_control_goal((_;_)).
  322is_control_goal((_->_)).
  323is_control_goal((_|_)).
  324is_control_goal((_*->_)).
  325is_control_goal(\+(_)).
  326
  327%!  body_term_calls(:BodyTerm, -Goal) is nondet.
  328%
  329%   True when BodyTerm calls Goal.  This   predicate  looks into control
  330%   structures as well as meta predicates based on predicate_property/2.
  331%
  332%   When a variable is  called,  this   is  normally  returned  in Goal.
  333%   Currently if a variable is called   with additional arguments, e.g.,
  334%   call(Var, a1), this call is reported as call(Var, a1).
  335
  336body_term_calls(M:Body, Calls) :-
  337    body_term_calls(Body, M, M, Calls).
  338
  339body_term_calls(Var, M, C, Calls) :-
  340    var(Var),
  341    !,
  342    qualify(M, C, Var, Calls).
  343body_term_calls(M:Goal, _, C, Calls) :-
  344    !,
  345    body_term_calls(Goal, M, C, Calls).
  346body_term_calls(Goal, M, C, Calls) :-
  347    qualify(M, C, Goal, Calls).
  348body_term_calls((A,B), M, C, Calls) :-
  349    !,
  350    (   body_term_calls(A, M, C, Calls)
  351    ;   body_term_calls(B, M, C, Calls)
  352    ).
  353body_term_calls((A;B), M, C, Calls) :-
  354    !,
  355    (   body_term_calls(A, M, C, Calls)
  356    ;   body_term_calls(B, M, C, Calls)
  357    ).
  358body_term_calls((A->B), M, C, Calls) :-
  359    !,
  360    (   body_term_calls(A, M, C, Calls)
  361    ;   body_term_calls(B, M, C, Calls)
  362    ).
  363body_term_calls((A*->B), M, C, Calls) :-
  364    !,
  365    (   body_term_calls(A, M, C, Calls)
  366    ;   body_term_calls(B, M, C, Calls)
  367    ).
  368body_term_calls(\+ A, M, C, Calls) :-
  369    !,
  370    body_term_calls(A, M, C, Calls).
  371body_term_calls(Goal, M, C, Calls) :-
  372    predicate_property(M:Goal, meta_predicate(Spec)),
  373    \+ ( functor(Goal, call, _),
  374         arg(1, Goal, A1),
  375         strip_module(A1, _, P1),
  376         var(P1)
  377       ),
  378    !,
  379    arg(I, Spec, SArg),
  380    arg(I, Goal, GArg),
  381    meta_calls(SArg, GArg, Call0),
  382    body_term_calls(Call0, M, C, Calls).
  383
  384meta_calls(0, Goal, Goal) :-
  385    !.
  386meta_calls(I, Goal0, Goal) :-
  387    integer(I),
  388    !,
  389    length(Extra, I),
  390    extend_goal(Goal0, Extra, Goal).
  391meta_calls(//, Goal0, Goal) :-
  392    extend_goal(Goal0, [_,_], Goal).
  393meta_calls(^, Goal0, Goal) :-
  394    !,
  395    strip_existential(Goal0, Goal).
  396
  397strip_existential(Var, Var) :-
  398    var(Var),
  399    !.
  400strip_existential(_^In, Out) :-
  401    strip_existential(In, Out).
  402
  403qualify(M, C, Goal, Calls) :-
  404    M == C,
  405    !,
  406    Calls = Goal.
  407qualify(M, _, Goal, M:Goal)